Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
PLoS Pathog ; 17(12): e1010174, 2021 12.
Article in English | MEDLINE | ID: covidwho-1624813

ABSTRACT

The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness.


Subject(s)
Adaptation, Physiological/physiology , Host-Pathogen Interactions/physiology , Influenza A Virus, H3N8 Subtype/physiology , Influenza A Virus, H3N8 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Animals , Genetic Fitness/physiology , Horses
2.
PLoS Biol ; 19(12): e3001065, 2021 12.
Article in English | MEDLINE | ID: covidwho-1594053

ABSTRACT

The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.


Subject(s)
Epithelial Cells/immunology , Hot Temperature , Immunity, Innate/immunology , Interferons/immunology , Respiratory Mucosa/immunology , SARS-CoV-2/immunology , Virus Replication/immunology , Adolescent , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Gene Expression Profiling/methods , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/genetics , Interferons/genetics , Interferons/metabolism , Male , Middle Aged , Models, Biological , RNA-Seq/methods , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Tissue Culture Techniques , Vero Cells , Virus Replication/genetics , Virus Replication/physiology
3.
J Infect Dis ; 224(1): 31-38, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1294729

ABSTRACT

Virus-virus interactions influence the epidemiology of respiratory infections. However, the impact of viruses causing upper respiratory infections on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and transmission is currently unknown. Human rhinoviruses cause the common cold and are the most prevalent respiratory viruses of humans. Interactions between rhinoviruses and cocirculating respiratory viruses have been shown to shape virus epidemiology at the individual host and population level. Here, we examined the replication kinetics of SARS-CoV-2 in the human respiratory epithelium in the presence or absence of rhinovirus. We show that human rhinovirus triggers an interferon response that blocks SARS-CoV-2 replication. Mathematical simulations show that this virus-virus interaction is likely to have a population-wide effect as an increasing prevalence of rhinovirus will reduce the number of new coronavirus disease 2019 cases.


Subject(s)
Antibiosis , COVID-19/virology , Coinfection , Picornaviridae Infections/virology , Rhinovirus/physiology , SARS-CoV-2/physiology , Virus Replication , COVID-19/epidemiology , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Humans , Respiratory Mucosa/virology
4.
PLoS Biol ; 19(2): e3001091, 2021 02.
Article in English | MEDLINE | ID: covidwho-1102372

ABSTRACT

The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.


Subject(s)
COVID-19 Vaccines , COVID-19/diagnosis , COVID-19/virology , Reverse Genetics , SARS-CoV-2/genetics , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , Codon , Humans , Hydrazones/pharmacology , Mice , Morpholines/pharmacology , Open Reading Frames , Plasmids/genetics , Pyrimidines/pharmacology , Serine Endopeptidases/metabolism , Vero Cells , Viral Proteins/metabolism
5.
Cell ; 183(5): 1325-1339.e21, 2020 11 25.
Article in English | MEDLINE | ID: covidwho-838593

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , Protein Biosynthesis , RNA Splicing , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , A549 Cells , Animals , COVID-19/virology , Chlorocebus aethiops , HEK293 Cells , Humans , Interferons/metabolism , Protein Transport , RNA, Messenger/metabolism , RNA, Ribosomal, 18S/metabolism , RNA, Small Cytoplasmic/chemistry , RNA, Small Cytoplasmic/metabolism , Signal Recognition Particle/chemistry , Signal Recognition Particle/metabolism , Vero Cells , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL